Preparation, Spectroscopic Properties, and Reactivity of trans-Hydridoaryl and trans-Hydridomethyl Complexes of Platinum(II)

DENNIS P. ARNOLD and MARTIN A. BENNETT*

Received June 3, 1983

trans-Hydridomethyl and trans-hydridoaryl complexes of platinum(II), trans-PtH(R)L₂, have been made by three general methods: (1) reaction of hydroxo complexes trans-Pt(OH)RL₂ with methanol ($R = C_6H_5$, $L = P-t-Bu_2Me$, P-t-BuMe₂, PEt₃, PPh₃; R = CH₃, L = P-*i*-Pr₃); (2) treatment of chloro or N-acetamido complexes trans-PtXRL₂ (X = Cl, NHCOCH₃) with methanolic sodium methoxide or with methanolic or ethanolic sodium borohydride ($R = C_6H_5$, $L = P-t-Bu_2Me$, $P-t-BuMe_2$, PPh_3 , $P-i-Pr_3$; $R = CH_3$, $L = PPh_3$); (3) treatment of labile solvento salts trans- $[PtR(solv)L_2]BF_4$ (solv = methanol or acetone) with sodium methoxide or sodium borohydride ($R = C_6H_5$, $L = PPh_3$, PEt_3 , PMe_3 ; $R = CH_3$, $L = PPh_3$). The use of methanol (method 1) or of sodium methoxide (methods 2 and 3) depends on the formation of thermally unstable methoxo complexes trans-Pt(OCH₃)RL₂, two of which ($R = C_6H_5$, $L = PEt_5$; $R = CH_3$, $L = PPh_3$) have been isolated in an impure state and identified spectroscopically. In two cases, the product from NaBH₄ reduction is contaminated with a thermally unstable trihydridoplatinum (IV) complex $PtH_3(R)L_2$ ($R = C_6H_5$; $L = PEt_3$, PMe_3). In contrast with the behavior of the corresponding cis isomers, reductive elimination of RH from trans-PtH(R)L₂ occurs only at elevated temperature, stability to heat and air being greater for complexes containing bulky phosphines. Loss of benzene from trans-PtH(C_6H_5)(PEt₃)₂ is facilitated by CO and inhibited by triethylphosphine. Dimethyl acetylenedicarboxylate inserts into the Pt-H bond of $trans-PtH(C_6H_4-p-Br)(PEt_3)_2$ to give the σ -vinyl complex $trans-Pt[Z-C(CO_2Me)]=CH(CO_2Me)](C_6H_4-p-Br)(PEt_3)_2$, but olefins such as ethylene, diethyl maleate, and acrylonitrile do not react. Acetonitrile reacts with trans-PtH(C_6H_3)(PMe₃)₂ to give benzene and trans-PtH(CH₂CN)(PMe₃)₂ as the main products, probably via an intermediate platinum(IV) oxidative-addition product, and trimethyltin hydride oxidatively adds to trans-PtH(C_6H_5)(PEt₃)₂ at -78 °C to give a thermally unstable platinum(IV) complex, $PtH_2(C_6H_5)(SnMe_3)(PEt_3)_2$, as a mixture of two isomers, identified by their ¹H and ³¹P NMR spectra.

Introduction

Transition-metal complexes containing both hydride and σ -carbon-bonded ligands are of current interest since they are implicated as intermediates in homogeneously catalyzed hydrogenation of unsaturated hydrocarbons¹ and as the products of oxidative addition of C-H bonds to low-valent transitionmetal complexes.² Although hydridoalkyl and hydridoaryl complexes of octahedral ruthenium(II) and osmium(II) in cisand trans-isomeric forms were described almost 20 years ago,³ remarkably few platinum(II) compounds of this class were known when we began our work. Most are of the type trans-PtH(R)L₂, in which the σ -bonded group is strongly electron withdrawing, e.g.: $L = PPh_3$, $R = CF_3$,⁴ C(CN)₃,⁵ CH₂CN,^{6,7} (CH₂)₃CN;^{6,8} $L = P(cy)_3$, $R = C_6F_5$, 1,3,5-C₆H₂F₃, 1,3-C₆H₃F₂; $L = PEt_3$, $R = C_6F_5$.⁹ Compounds lacking electron-withdrawing substituents in the alkyl group include the (trimethylsilyl)methyl and phenyl derivatives ($L = PEt_3$; $R = CH_2SiMe_{3}^{10} C_6H_5^{11}$), which were not isolated in a pure state, and the 1-cyclohexenyl complex (L = PPh₃; \dot{R} = $C_6 H_9$).¹² The only stable cis-hydridoalkyl complexes of platinum(II) contain electron-withdrawing alkyl groups and

- (1) James, B. R. "Homogeneous Hydrogenation"; Wiley: New York, 1973.
- James, B. R. Adv. Organomet. Chem. 1979, 17, 319-405. Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, (2)352-354
- Chatt, J.; Hayter, R. G. J. Chem. Soc. 1963, 6017-6027.
- (4) Michelin, R. A.; Belluco, U.; Ros, R. Inorg. Chim. Acta 1976, 24, L33–L34
- (5) Beck, W.; Schorpp, K.; Oetker, C.; Schlodder, R.; Smedal, H. S. Chem. Ber. 1973, 106, 2144-2155.
- (6) Ros, R.; Bataillard, R.; Roulet, R. J. Organomet. Chem. 1976, 118, C53-C54
- (7) Ros, R.; Michelin, R. A.; Bataillard, R.; Roulet, R. J. Organomet. Chem. 1977, 139, 355-359.
- (8) Ros, R.; Michelin, R. A.; Bataillard, R.; Roulet, R. J. Organomet. Chem. 1978, 161, 75-90.
- Fornies, J.; Green, M.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1977, 1006-1009.
- Wozniak, B.; Ruddick, J. D.; Wilkinson, G. J. Chem. Soc. A 1971, (10)3116-3120.
- (11) Bracher, G.; Grove, D. M.; Venanzi, L. M.; Bachechi, F.; Mura, P.; Zambonelli, L. Angew. Chem., Int. Ed. Engl. 1978, 17, 778-779.
 (12) Bennett, M. A.; Yoshida, T. J. Am. Chem. Soc. 1978, 100, 1750-1759.

bidentate bis(tertiary phosphines) and bis(tertiary arsines), e.g. cis-PtH(R)L₂ (R = CF₃, L₂ = cis-Ph₂PCH=CHPPh₂;⁴ $R = CH_2CN$, $L_2 = cis-Ph_2PCH=CHPPh_2$, $Ph_2PCH_2CH_2PPh_2$, $Ph_2P(CH_2)_3PPh_2$, $Ph_2AsCH_2CH_2AsPh_2^7$). The complexes of this type that lack an electron-withdrawing substituent, e.g. those with $L = PPh_3$, $R = CH_3$, C_2H_5 , $CH_2CH = CH_2$, C_6H_5 , undergo rapid reductive elimination of RH even at -25 °C and have been characterized by NMR spectroscopy.¹³ We reported in a preliminary communication¹⁴ that monomeric hydroxo complexes of platinum(II) containing σ -methyl or σ -phenyl groups are useful precursors to the corresponding hydrido complexes, and we give full details of our work in this paper. Meanwhile an alternative synthesis of complexes of the type $trans-PtH(R)L_2$ has been described.¹⁵ In the following paper¹⁶ we report a systematic study of the variation of the spectroscopic parameters of trans-hydridoaryl complexes with the nature of the aryl group.

Experimental Section

IR spectra were measured on a PE457 instrument in Nujol mulls, KBr disks, or CH₂Cl₂ solutions, ¹H NMR spectra were recorded on Varian HA-100 or Jeol FX-60 instruments with Me₄Si or CH₂Cl₂ as internal reference, and ³¹P(¹H) NMR spectra were recorded at 24.3 MHz on a modified Bruker 322S instrument with 85% H₃PO₄ as external reference. The ¹H NMR spectrum of an equimolar mixture of trans-PtH(C_6H_5)(PEt₃)₂ and trimethyltin hydride was recorded in CD₂Cl₂ at -78 °C on a Bruker HFX-270 instrument. Melting points and decomposition points were measured in open capillaries. Microanalyses (Table I) were performed by the Microanalytical Laboratories of the Research School of Chemistry and the John Curtin School of Medical Research, Australian National University. Solvents were AR grade and were degassed by passage of nitrogen. AR methanol was dried by distillation from magnesium methoxide and was stored under nitrogen over 3-Å molecular sieves. Reactions were carried out under nitrogen, and while most of the complexes were air

- (13) Abis, L.; Sen, A.; Halpern, J. J. Am. Chem. Soc. 1978, 100, 2915-2916. Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 199, C17-(14)
- C20. Abis, L.; Santi, R.; Halpern, J. J. Organomet. Chem. 1981, 215, (15)
- 263-267 Arnold, D. P.; Bennett, M. A. Inorg. Chem., following paper in this (16)issue.

Table I. Analytical Data and Melting Points for trans-PtH(R)L, Complexes

		calcd		found	
complex	mp, °C	% C	% H	% C	% H
$PtH(C_6H_5)(P-t-Bu_2Me)_2^a$	166-168	48.55	8.15	48.55	8.1
$PtH(C_6H_5)(P-t-BuMe_2)_2$	125	42.4	7.1	42.4	6.9
$PtH(C_6H_5)(PPh_3)_2^b$	170 (dec >125)	63.2	4.55	63.0	4.6
$PtH(C, H,)(P-i-P_{I_1}), c$	55-56 (dec >155)	48.55	8.15	48.4	8.2
$PtH(C_6H_5)(PEt_3)_2$	ca. 5	42.4	7.1	42.35	6.9
$PtH(C_6H_4-p-Br)(PEt_3)_2^d$	78-80	36.7	6.0	37.2	6.2
$PtH(C_{6}H_{5})(PMe_{3})_{2}$	98-102 dec	33.9	5.7	33.8	5.7
PtH(CH ₃)(PPh ₃) ₂	170 (dec >140)	60.4	4.7	60.0	4.9
$PtH(CH_3)(P-i-PI_3)_2$	110 (dec > 138)	42.9	8.7	42.7	8.45

^a Mol wt (osmometry, CH₂Cl₂, 37 °C): calcd, 594; found, 592. ^b % P: calcd, 7.8; found, 8.5. ^c % P: calcd, 10.4; found, 10.7. ^d % Br: calcd, 13.6; found, 13.4.

stable when isolated, some required handling under nitrogen using conventional Schlenk-tube and syringe techniques.

The preparation of platinum(II) chloro, hydroxo, and N-acetamido complexes has been described.^{17,18} The previously unreported complex *trans*-PtCl(C₆H₅)(P-*i*-Pr₃)₂ was made by reaction of an excess of P-*i*-Pr₃ with PtCl(C₆H₅)(1,5-COD)¹⁹ and was recrystallized from *n*-hexane as colorless crystals, mp 118 °C: IR (Nujol) 274 cm⁻¹ (ν (PtCl)); ¹H NMR (CD₂Cl₂) δ 1.21 (q, 36, | ³J(PH) + ⁵J(PH) | = 14 Hz, ³J(HH) = 7 Hz, PCHMe₂), 2.3 (m, 6, PCHMe₂), 6.5-8 (m, 5, C₆H₅). Anal. Calcd for C₂₄H₄₇ClP₂Pt: C, 45.9; H, 7.5; Cl, 5.6. Found: C, 46.3; H, 7.65; Cl, 5.5.

The complex *trans*-PtBr(C_6H_4 -*p*-Br)(PEt₃)₂ was prepared by oxidative addition of *p*-dibromobenzene to Pt(PEt₃)₄.¹⁶ The following preparations of hydridoalkyl and hydridoaryl complexes are representative of the methods used.

(1) trans-Hydridomethylbis(triisopropylphosphine)platinum(II), trans-PtH(CH₃)(P-*i*-Pr₃)₂, from the Corresponding Hydroxo Complex. A suspension of trans-Pt(OH)(CH₃)(P-*i*-Pr₃)₂ (0.043 g, 0.08 mmol) in dry methanol (5 mL) was stirred for 3 h at room temperature. The colorless crystals that deposited were filtered off under nitrogen and dried in vacuo, giving trans-PtH(CH₃)(P-*i*-Pr₃)₂ (0.023 g, 55%).

The complexes $Pt(OH)(C_6H_5)L_2$ (L = P-t-Bu₂Me, P-t-BuMe₂) reacted with methanol to give the corresponding hydrido complexes, identified by their characteristic ¹H NMR spectra.

(2) trans-Hydridophenylbis(triphenylphosphine)platinum(II), trans-PtH(C₆H₅)(PPh₃)₂, from the Corresponding Hydroxo Complex. A suspension of trans-Pt(OH)(C₆H₅)(PPh₃)₂ in dry methanol was heated to 65 °C. The solid dissolved rapidly to give a pale yellow solution from which colorless crystals precipitated over a 30-min period. After the mixture was cooled to room temperature, the solid was collected by filtration, washed with methanol, and identified by ¹H NMR and IR spectroscopy as pure trans-PtH(C₆H₅)(PPh₃)₂.

(3) trans-Hydridophenylbis(di-tert-butylmethylphosphine)platinum(II), trans-PtH(C_6H_5)(P-t-Bu₂Me)₂. A suspension of trans-PtCl(C_6H_5)(P-t-Bu₂Me)₂ (0.628 g, 1 mmol) in dry methanol (40 mL) was treated with sodium methoxide (0.15 g, 2.8 mmol), and the mixture was heated under reflux with stirring for 2 h. The solvent was evaporated under reduced pressure, and the residue was extracted with *n*-hexane (25 mL) and water (10 mL). The *n*-hexane layer was separated, filtered through activated charcoal, and dried (Na₂SO₄), and the solvent was evaporated to yield a colorless solid. Recrystallization from dichloromethane/methanol gave trans-PtH-(C_6H_5)(P-t-Bu₂Me)₂ as colorless needles (0.44 g, 74%).

(4) trans-Hydridomethylbis(triphenylphosphine)platinum(II), trans-PtH(CH₃)(PPh₃)₂. A suspension of trans-Pt(CH₃)-(NHCOCH₃)(PPh₃)₂ (0.069 g, 0.09 mmol) in methanol (5 mL) containing sodium methoxide (0.015 g, 0.28 mmol) was stirred and heated under reflux for 1 h. The solution was allowed to cool to room temperature, and the colorless solid was collected by filtration under nitrogen. After the solid was dried in vacuo, the yield of trans-PtH(CH₃)(PPh₃)₂ was 0.048 g (75%).

(5) trans-Hydridophenylbis(triphenylphosphine)platinum(II), trans-PtH(C_6H_5)(PPh₃)₂. A suspension of trans-PtCl(C_6H_5)(PPh₃)₂

- (17) Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 199, 119-135.
- (18) Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 202, 107-114.
- (19) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1978, 357-368.

(0.208 g, 0.25 mmol) in methanol (20 mL) was heated to 60 °C and treated with AgBF₄ (0.049 g, 0.25 mmol) dissolved in the minimum volume of methanol. The mixture was stirred vigorously for 2 h, AgCl was removed by filtration, and the filtrate was treated with solid sodium methoxide (0.02 g). When the mixture was warmed to 65 °C for 30 min, colorless crystals formed rapidly. After the solution had been allowed to cool to room temperature, the solid was filtered off, washed with methanol, and dried. Recrystallization from dichloromethane/methanol gave colorless crystalline *trans*-PtH(C₆H₅)(PPh₃)₂ (0.16 g, 80%).

(6) trans-Methoxomethylbis(triphenylphosphine)platinum(II), trans-Pt(OCH₃)(CH₃)(PPh₃)₂, and Its Conversion into trans-PtH-(CH₃)(PPh₃)₂. A mixture of trans-PtI(CH₃)(PPh₃)₂ (0.21 g, 0.25 mmol) and AgBF₄ (0.048 g, 0.25 mmol) in benzene (15 mL) and methanol (5 mL) was stirred at ca. 40 °C or 2 h. After the AgI had been removed by filtration and washed with dichloromethane (10 mL), the combined filtrate and washings were evaporated to dryness. The resulting white solid was suspended in dry methanol (15 mL), and sodium methoxide (0.02 g, 0.37 mmol) was added with stirring. The colorless crystals that formed within a few minutes were filtered, washed successively with water and methanol, and dried in vacuo. The complex was identified as impure trans-Pt(OCH₃)(CH₃)(PPh₃)₂ on the basis of its ¹H NMR spectrum in CD₂Cl₂: δ -0.33 (t with ¹⁹⁵Pt satellites, PtCH₃, ³J(PH) = 6.3 Hz, ²J(PtH) = 72 Hz), 2.51 (s with ¹⁹⁵Pt satellites, OCH₃, ³J(PtH) = 25 Hz).

The solid was suspended in dry methanol and heated under reflux with stirring for 2 h. After being allowed to cool to room temperature, the solution was filtered and the solid was dried in vacuo. It was identified as impure *trans*-PtH(CH₃)(PPh₃)₂ by its ¹H NMR and IR spectra.

(7) trans-Methoxophenylbis(triethylphosphine)platinum(II), trans-Pt(OCH₃)(C₆H₅)(PEt₃)₂, and Its Conversion into trans-PtH-(C₆H₅)(PEt₃)₂. Reaction of trans-PtCl(C₆H₅)(PEt₃)₂ with AgBF₄ in acetone and treatment of the resulting salt with NaOCH₃ as described by Coulson²⁰ gave impure trans-Pt(OCH₃)(C₆H₅)(PEt₃)₂ as a pale yellow oil. ¹H NMR: (C₆D₆) δ 3.80 (s with ¹⁹⁵Pt satellites, OCH₃, ³J(PtH) = 27 Hz); (CD₂Cl₂) δ 3.51 (³J(PtH) = 26 Hz). Attempted purification of this product led to rapid decomposition to dark, oily products. ¹H NMR spectra in C₆D₆ showed that trans-PtH(C₆H₅)(PEt₃)₂ was one of the species present.

A similar procedure starting with *trnas*-PtCl(C₆H₅)(PMe₂Ph)₂ gave an impure brown oil containing ca. 65% *trans*-Pt(OCH₃)(C₆H₅)-(PMe₂Ph)₂, as estimated by integration of the ¹H NMR spectrum. ¹H NMR (CD₂Cl₂): δ 3.4 (s with ¹⁹⁵Pt satellites, OCH₃, ³J(PtH) = 26 Hz). Attempted recrystallization from *n*-pentane at low temperatures did not give a pure product.

(8) trans-Hydridophenylbis(triethylphosphine)platinum(II), trans-PtH(C₆H₅)(PEt₃)₂. A solution of trans-PtCl(C₆H₅)(PEt₃)₂ (0.272 g, 0.5 mmol) in dry methanol (5 mL) was treated with AgBF₄ (0.097 g, 0.5 mmol) in dry methanol (2 mL). The mixture was stirred for 10 min at room temperature, and the precipitated AgCl was filtered off under nitrogen and washed with two 2-mL portions of methanol. The combined filtrate and washings were cooled to -40 °C, and solid NaBH₄ (0.019 g, 0.5 mmol) was added in several portions. After ca. 5 min, a white solid precipitated, which dissolved with evolution of gas as the temperature was allowed to rise to ca. 20 °C over 30 min. The pale yellow solution was evaporated to dryness at ca. 20 °C, and the oily solid residue was extracted with three 10-mL portions of *n*-pentane. The extract was filtered through Celite and evaporated to give *trans*-PtH(C₆H₅)(PEt₃)₂ as a colorless oil in almost quantitative yield. Recrystallization from isopentane (3 mL) at -78 °C gave colorless needles (0.14 g, 55%), which were separated by decantation of the mother liquor at -78 °C and dried in vacuo while the temperature was allowed to rise slowly. The solid melted at ca. 5 °C to a colorless oil that still contained solvent as shown by elemental analysis. Pumping at room temperature caused the oil to darken. An analytical sample was finally obtained by allowing the crystals to just melt, pumping at 10⁻⁵ mm/<10 °C, and then analyzing immediately, the sample being handled under nitrogen.

In some preparations the crude product contained up to ca. 10% of an impurity that was identified as *trans-mer*-trihydridophenylbis(triethylphosphine)platinum(IV), PtH₃(C₆H₅)(PEt₃)₂, on the basis of its spectroscopic properties: IR (thin film) 1780 (br) cm⁻¹ (ν (PtH) for *trans*-HPtH); ¹H NMR (C₆D₆) δ -13.22 (br tt, PtH trans to C₆H₅, ¹J(PtH) = 598 Hz, ²J(PH) = 15 Hz, ²J(HH, cis) = 3.7, ⁴J(HH, o-C₆H₅) = ca. 2 Hz), -9.48 (dt, PtH, ¹J(PtH) = 701 Hz, ²J(PH) = 14.7 Hz, ²J(HH, cis = 3.7 Hz); ³¹P{¹H} NMR (toluene, -50 °C) δ 5.5 (¹J(PtP) = 1917 Hz). This complex could not be separated from *trans*-PtH(C₆H₅)(PEt₃)₂ but decomposed more rapidly than the latter.

(9) trans-Hydrido(p-bromophenyl)bis(triethylphosphine)platinum(II), trans-PtH(C_6H_4 -p-Br)(PEt_3)_2. A solution of AgBF₄ (0.49 g, 0.25 mmol) in methanol (5 mL) was added dropwise to a solution of trans-PtBr(C_6H_4 -p-Br)(PEt_3)_2 (0.167 g, 0.25 mmol) in dichloromethane (3 mL). After removal of AgBr by filtration, the colorless solution was cooled to -50 °C and solid NaBH₄ (0.095 g, 0.25 mmol) was added to one portion. The white precipitate that formed initially dissolved with effervescence as the solution was allowed to warm to room temperature over ca. 30 min. Solvents were removed by evaporation, and the residue was extracted with *n*-hexane (10 mL). After concentration and cooling to -30 °C, colorless needles of trans-PtH(C_6H_4 -p-Br)(PEt_3)_2 (0.115 g, 78%) were obtained.

(10) trans-Hydridophenylbis(trimethylphosphine)platinum(II), trans-PtH(C₆H₅)(PMe₃)₂. This was prepared similarly to the analogous PEt₃ compound by addition of NaBH₄ (ca. 0.015 g) to a solution prepared from trans-PtCl(C₆H₅)(PMe₃)₂ (0.153 g, 0.33 mmol) and AgBF₄ (0.065 g, 0.33 mmol) in dichloromethane/methanol. The resulting pale brown solution was evaporated to dryness, and the solid residue was extracted briefly with dichloromethane (7 mL). The solution was filtered, treated with methanol (7 mL), concentrated in vacuo, and cooled to -50 °C. The colorless crystals that separated were filtered at -78 °C, washed with methanol, and dried in vacuo to give 0.079 g (56%) of trans-PtH(C₆H₅)(PMe₃)₂. An analytically pure sample was obtained by recrystallization from ether/*n*-pentane.

The crude product obtained by extraction of the original solid residue with *n*-hexane was contaminated with a small amount of a compound having IR bands at 1978 and 1765 cm⁻¹, in addition to the band due to *trans*-PtH(C_6H_5)(PMe₃)₂ at 1926 cm⁻¹. The impurity is believed to be *trans*-mer-PtH₃(C_6H_5)(PMe₃)₂. When a *n*-hexane solution of the mixture was cooled, the mother liquor was enriched in the platinum(IV) complex but the complex could not be obtained in a pure state owing to its rapid decomposition and the small quantities in which it was formed.

(11) trans-Hydridophenylbis(tert-butyldimethylphosphine)platinum(II), trans-PtH(C₆H₅)(P-t-Bu₂Me)₂. To a solution of trans-PtCl(C₆H₅)(P-t-Bu₂Me)₂ (0.055 g, 0.1 mmol) in absolute ethanol (5 mL) was added NaBH₄ (0.02 g, 0.53 mmol), and the mixture was stirred at room temperature for 2 h. The solvent was evaporated under reduced pressure, and the residue was extracted with *n*-hexane (5 mL) and water (5 mL). The *n*-hexane layer was separated, filtered through activated charcoal, dried (Na₂SO₄), and evaporated to give trans-PtH(C₆H₅)(P-t-Bu₂Me)₂ quantitatively as colorless crystals.

Thermal Decomposition of trans-PtH(C₆H₅)(PEt₃)₂ in Various Solvents. (1) Cyclohexane. When a solution of trans-PtH-(C₆H₅)(PEt₃)₂ in C₆H₁₂ or C₆D₁₂ was heated in a sealed NMR tube at 65 °C, it decomposed within 1 h, forming platinum metal, benzene, and three phosphorus-containing species, which showed singlets with ¹⁹⁵Pt satellites in their ³¹P{¹H} NMR spectra. The major product was Pt(PEt₃)₃ (δ_P 41.8, ¹J(PtP) = 4224 Hz; |it.²¹ δ_P 42.2, ¹J(PtP) = 4231 Hz in *n*-heptane). The unidentified minor products had δ_P 21.3, ¹J(PtP) = 3550 Hz and δ_P 14.4, ¹J(PtP) = 2830 Hz, peak heights being in the ratio 16:3:2, respectively.

(2) *n*-Decane. In this solvent there was an induction period of nearly 1 h at 70 $^{\circ}$ C, then the solution rapidly turned black. Benzene was identified by GC/MS and by ¹H NMR spectroscopy.

(3) Methylcyclohexane. At 45 °C there was an induction period of 6 h. Most of the complex then decomposed over a period of 1 h, and the rest decomposed slowly over a further 5 h. As judged by their ³¹P NMR spectra, the products appeared to be the same as those formed in cyclohexane and were formed in similar proportions.

(4) Cyclohexane Containing Triethylphosphine. When experiment 1 was repeated in the presence of 1 mol of triethylphosphine, the solution remained clear and no benzene could be detected after 1 h. The hydride resonance of the complex was still present although ³¹P coupling was no longer observed.

Reaction of trans-PtH(C₆H₅)(PEt₃)₂ with CO. Carbon monoxide was bubbled through a solution of *trans*-PtH(C₆H₅)(PEt₃)₂ in *n*-hexane at room temperature. After 45 min the solution became pale yellow and then darkened to orange and finally red. Initially the solution showed IR ν (CO) bands at 1988 and 1947 cm⁻¹, probably due to Pt(CO)₂(PEt₃)₂ (lit.²² 1973, 1931 cm⁻¹ in THF). Subsequently these bands decreased in intensity and were replaced by strong bands at 1930 and 1766 cm⁻¹ due to unidentified cluster compounds.

A similar experiment carried out in an NMR tube at -20 °C showed that benzene was formed within 20 min of continuous bubbling of CO.

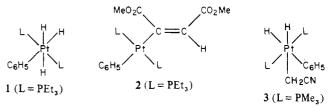

Reaction of *trans***-PtH**(C_6H_4 -*p*-**Br**)(**PEt**_3)₂ **with Dimethyl Acetylenedicarboxylate.** A mixture of *trans*-PtH(C_6H_4 -*p*-Br)(PEt_3)₂ (0.12 g, 0.2 mmol) and dimethyl acetylenedicarboxylate (30 μ L, 0.25 mmol) in *n*-hexane was heated under reflux for 45 min. The colorless crystals that had begun to form within ca. 10 min were separated from the yellow mother liquor and washed by decantation with *n*-pentane. Recrystallization from dichloromethane/*n*-hexane gave colorless crystals of *trans*-Pt(C_6H_4 -*p*-Br)[C(CO_2Me)=CH(CO_2Me)](PEt_3)_2, mp 168 °C dec (0.05 g, 33%). Anal. Calcd for C₂₄H₄₁BrO₄P₂Pt: C, 39.5; H, 5.7; Br, 10.9. Found: C, 39.6; H, 5.75; Br, 11.2. IR (cm⁻¹, Nujol): 1712, 1700, 1202, 1163 (all s) (ester), 1571 m(C=C). ¹H NMR (CD₂Cl₂): δ 3.63, 3.65 (each s, 6, CO₂CH₃), 6.88 (t with ¹⁹⁵Pt satellites, 1, ³J(PtH) = 72, ⁴J(PH) = 2.2 Hz, CHCO₂CH₃). ³¹P{¹H} NMR (CH₂Cl₂): δ 4.8 (¹J(PtP) = 2771 Hz).

Under similar conditions *trans*-PtH(C_6H_4 -*p*-Br)(PEt₃)₂ did not react with acrylonitrile in refluxing *n*-hexane or methanol nor with diethyl maleate in refluxing toluene. No insertion product could be isolated from the attempted reaction of the hydride with acrylonitrile in refluxing methanol, though a small amount of CH₃OCH₂CH₂CN was formed, as shown by ¹H NMR spectroscopy.

Results and Discussion

We have shown¹² that the cyclohexyne platinum(0) complexes $Pt(C_6H_8)L_2$ ($L_2 = 2$ PPh₃, dppe) differ markedly in their reactions with alcohols. When it is heated with methanol or ethanol, the triphenylphosphine derivative gives a hydrido(η^1 -cyclohexenyl) complex, *trans*-PtH(C₆H₉)(PPh₃)₂, whereas the dppe derivative gives a methoxo complex, Pt-(OCH₃)(C₆H₉)(dppe), which is thermally stable but is readily hydrolyzed to the corresponding hydroxo complex Pt-(OH)(C₆H₉)(dppe). The hydride is probably formed by β elimination of the appropriate aldehyde from the thermally unstable alkoxo complexes *trans*-Pt(OR)(C₆H₉)(PPh₃)₂ (R = CH₃, C₂H₅).

In the light of these results, it is not surprising that when the hydroxo complexes *trans*-Pt(OH)(C₆H₅)L₂ (L = P-*t*-Bu₂Me, P-*t*-BuMe₂, and PEt₃) and *trans*-Pt(OH)(CH₃)(P-*i*-Pr₃)₂¹⁷ are dissolved in methanol or aqueous methanol at room temperature the corresponding colorless, crystalline hydrido complexes *trans*-PtH(C₆H₅)L₂ and *trans*-PtH(CH₃)(P-*i*-Pr₃)₂ can be isolated in 50-60% yield. A similar reaction to give *trans*-PtH(C₆H₅)(PPh₃)₂ occurs when *trans*-Pt-(OH)(C₆H₅)(PPh₃)₂ is heated under reflux in methanol. We have found a number of routes to the hydrido complexes that do not require prior isolation of the hydroxo complexes (Scheme I). Thus, when the complex *trans*-PtCl(C₆H₅)-


^a Legend: (i) AgBF₄, solv = acetone or methanol; (ii) KOH(aq), solv = acetone; (iii) NaOCH₃/CH₃OH, 65 °C, solv = methanol, R = C₆H₅, CH₃, L = PPh₃; (iv) NaBH₄, solv = methanol, R = C₆H₅, L = PPh₃, PEt₃, PMe₃; (v) NaOCH₃/CH₃OH, 65 °C, R = C₆H₅, L = P-t-Bu₂Me, PPh₃, P-i-Pr₃, R = CH₃, L = PPh₃; (vi) NaBH₄/CH₃OH, R = C₆H₅, L = P-t-Bu₂Me; NaBH₄/C₂H₅OH, R = C₆H₅, L = P-t-BuMe₂; (vii) CH₃OH, 25 °C, R = C₆H₅, L = P-t-Bu₂Me, P-t-BuMe₂, PEt₃, R = CH₃, L = P-i-Pr₃; CH₃OH, 65 °C, R = C₆H₅, L = PPh₃.

 $(PPh_3)_2$ is heated in benzene/methanol with a threefold excess of sodium methoxide, the hydrido complex *trans*-PtH- $(C_6H_5)(PPh_3)_2$ is formed directly, and this method has also been used successfully to prepare the phenyl complexes containing P-t-Bu₂Me and P-i-Pr₃. Low yields of impure *trans*-PtH(C_6H_5)(PPh_3)_2 are obtained by this method owing to the poor solubility of the starting material, *trans*-PtI(CH₃)(PPh₃)₂, in the reaction medium; higher yields and purer product are obtained by employing the N-acetamido complex *trans*-Pt-(NHCOCH₃)(CH₃)(PPh₃)₂.¹⁸

All these reactions undoubtedly proceed via the methoxo complexes trans-Pt(OCH₃)RL₂, and evidence for their intermediacy has been obtained in several cases. Addition of sodium methoxide or sodium hydroxide to a methanolic solution of trans- $[Pt(C_6H_5)(MeOH)(PEt_3)_2]BF_4$, generated in situ by treatment of trans-PtCl(C_6H_5)(PEt₃)₂ with AgBF₄ in methanol, gives a methoxo complex, trans-Pt- $(OCH_3)(C_6H_5)(PEt_3)_2$, as reported by Coulson.²⁰ The ¹H NMR spectrum of the crude oily product exhibits values of $\delta(OCH_3)$ and $^3J(PtOCH_3)$ in agreement with those cited, but when the product is allowed to stand, the methoxyl resonance disappears and is replaced by a triplet at δ -6.67 (C₆D₆) due to the hydride proton of *trans*-PtH(C_6H_5)(PEt₃)₂. Similar behavior is observed in the corresponding PMe₂Ph system, although all attempts to isolate pure trans- $PtH(C_6H_5)$ -(PMe₂Ph)₂ by this or any of the other methods described in this paper were unsuccessful. Addition of NaOCH₃ to trans-[Pt(CH₃)(CH₃OH)(PPh₃)₂]BF₄ gives an immediate precipitate of impure trans- $Pt(OCH_3)(CH_3)(PPh_3)_2$, the ¹H NMR spectrum of which shows a singlet with ¹⁹⁵Pt satellites due to the methoxyl protons at δ 2.51 (³*J*(PtOCH₃) = 25 Hz) and a triplet with ¹⁹⁵Pt satellites due to Pt-CH₃ at δ -0.33 $({}^{3}J(PH) = 6.3 \text{ Hz}, {}^{2}J(PtH) = 72 \text{ Hz})$. When it is heated in methanol, this compound decomposes to give impure trans- $PtH(CH_3)(PPh_3)_2$. Thermally stable methoxo complexes of the type trans- $Pt(OCH_3)RL_2$ have been obtained only when strongly electron-withdrawing groups R are present.²³

Sodium borohydride can be used in place of sodium methoxide as a reducing agent in some of the preparations. For example, treatment of *trans*-PtCl(C₆H₅)(P-*t*-Bu₂Me)₂ with methanolic NaBH₄, or of *trans*-PtCl(C₆H₅)(P-*t*-BuMe₂) with ethanolic NaBH₄, gives good yields of the hydrides *trans*-PtH(R)L₂. Addition of NaBH₄ to the solvento cation *trans*-[Pt(C₆H₅)(MeOH)(PEt₃)₂]⁺ in methanol below -40 °C precipitates colorless crystals, which dissolve with gas evolution on warming to ca. -15 °C. The crystals are stable under nitrogen at -40 °C but rapidly become oily and black in air at room temperature. Room-temperature workup of the reaction mixture gives *trans*-PtH(C₆H₅)(PEt₃)₂ in high yield. Attempts to measure the ¹H NMR spectrum of the intermediate have been thwarted by its thermal instability. Although decomposition occurred during the measurements, the IR spectra of Nujol mulls showed bands at ca. 2380, 1670, and 1260 cm⁻¹ suggestive of the presence either of a η^2 -tetrahydridoborate complex, e.g. Pt(BH₄)(C₆H₅)(PEt₃)₂ or of a borohydride salt such as [Pt(C₆H₅)(MeOH)(PEt₃)₂]BH₄.²⁴ Such a compound could react with methanol to give hydrogen and *trans*-PtH(C₆H₅)(PEt₃)₂. η^2 -Tetrahydridoborate complexes of the later transition elements stabilized by bulky phosphines are known, e.g. *trans*-MH(BH₄)L₂ (M = Ni, Pd; L = P(cy)₃, P-*i*-Pr₃),²⁵ IrH₂(BH₄)L₂ (L = P-*t*-Bu₃, P-*t*-BuMe₂, P-*t*-Bu₂(*p*-MeC₆H₄)),²⁶ RuH(BH₄)L₃ (L = PPh₃, PMePh₂),^{27.28} and RuH(BH₄)(ttp) (ttp = PhP-(CH₂CH₂CH₂CPPh₂)₂).²⁹

The ¹H NMR spectra of the crude products from NaBH₄ reduction of *trans*-[Pt(C₆H₅)(MeOH)L₂]⁺ (L = PMe₃, PEt₃) occasionally showed the presence of ca. 10% of a second hydrido complex in addition to *trans*-PtH(C₆H₅)L₂. The triethylphosphine complex has been characterized on the basis of its IR spectrum and ¹H and ³¹P{¹H} NMR spectra (see later) as the trihydridoplatinum(IV) complex *mer*-PtH₃(C₆H₅)-(PEt₃)₂ (1), containing *trans*-PEt₃ ligands. These byproducts are thermally unstable and do not survive the recrystallization step needed to obtain pure *trans*-PtH(R)L₂.

All preparations of *trans*-PtH(CH₃)(P-*i*-Pr₃)₂ carried out with use of methanolic sodium methoxide or sodium borohydride as described above give a product contaminated with *trans*-PtH₂(P-*i*-Pr₃)₂, identified by comparison of its IR spectra (ν (PtH)) and ¹H NMR spectra (δ (PtH)) with those reported.^{30,31} This byproduct presumably arises by methanolysis or hydrogenolysis of the Pt-CH₃ bond under the reaction conditions. The pure complex *trans*-PtH(CH₃)(P-*i*-Pr₃)₂ is best obtained either by the reaction between Pt(OH)-(CH₃)(P-*i*-Pr₃)₂ and methanol at room temperature or by the reaction between *trans*-PtHCl(P-*i*-Pr₃)₂ and methylmagnesium bromide reported recently by Halpern and co-workers.¹⁵

All the *trans*-hydridophenyl complexes reported here are colorless, crystalline solids whose stability to heat, light, and air is markedly dependent on the nature of the tertiary phosphine. Melting points, approximate decomposition temperatures in air, and elemental analyses are given in Table I. The complexes of alkylphosphines are readily soluble in most common organic solvents including saturated hydrocarbons, whereas the triphenylphosphine complex is soluble in benzene but insoluble in *n*-hexane. The complex *trans*-PtH(C_6H_5)-(P-t-Bu₂Me)₂ is particularly stable; it remains colorless and crystalline for many months in air and requires no precautions in handling and storage. In contrast, the triethylphosphine analogue is difficult to isolate pure owing to its high solubility

- (24) James, B. D.; Wallbridge, M. G. H. Prog. Inorg. Chem. 1970, 11, 99-231.
- (25) Green, M. L. H.; Munakata, H.; Saito, T. J. Chem. Soc. A 1971, 469-474.
- (26) Empsall, H. D.; Hyde, E. M.; Mentzer, E.; Shaw, B. L.; Uttley, M. F. J. Chem. Soc., Dalton Trans. 1976, 2069-2074.
 (27) Holah, D. G.; Hughes, A. N.; Hui, B. C. Can. J. Chem. 1976, 54,
- (21) Holan, D. G.; Hugnes, A. N.; Hui, B. C. Can. J. Chem. 1976, 54, 320-328.
 (28) Crabtree, R. H.; Pearman, A. J. J. Organomet. Chem. 1978, 157,
- (29) Letis, J. B.; Mazanec, T. J.; Meek, D. W. J. Am. Chem. Soc. 1982, 104,
 (29) Letis, J. B.; Mazanec, T. J.; Meek, D. W. J. Am. Chem. Soc. 1982, 104,
- 3898-3905.
 (30) Leviston, P. G.; Wallbridge, M. G. H. J. Organomet. Chem. 1976, 110, 271-279.
- (31) Yoshida, T.; Otsuka, S. J. Am. Chem. Soc. 1977, 99, 2134-2140.

complex	IR ^b v(PtH) 1956	¹ H NMR ^c			$^{31}PNMR^{d}$		
		$\delta(PtH)$	$^{1}J(PtH)$	² <i>J</i> (PH)	$\delta(\mathbf{L}) \text{ or } \delta(\mathbf{R})^{\boldsymbol{e}}$	δ(P)	$^{1}J(PtP)$
$PtH(C_6H_5)(P-t-Bu_2Me)_2$		-6.34	600	18.0	1.00 (t, PCH ₃ , " J (PH)" = 6.5, ${}^{2}J$ (PtH) = 33), 1.35 (t, P-t-Bu, " J (PH)" = 14)	49.6	2927
$PtH(C_6H_5)(P-t-BuMe_2)_2$	1992 ^f	-6.83	640	18.3	nm	16.6	2803
$PtH(C_6H_5)(PPh_3)_2$	1890 ^g	-5.71	600	18.3	7.2-7.9 (m, Ph)	31.0 ^h	3120
$PtH(C_6H_5)(P-i-Pr_3)_2$	1968	-8.32	588	18.0	1.15 (q, $PCHCH_3$, "J(PH)" = 13), 2.16 (m, $PCHCH_3$)	55.9	3425
$PtH(C_6H_5)(PEt_3)_2$	1940 ⁱ	-6.67 ^j	648	19.0	1.05 (qn, PCH ₂ CH ₃ , " J (PH)" = 15), ca. 1.65 (m, PCH ₂ CH ₃)	17.3 ^k	2800
$PtH(C_{e}H_{a}-4-Br)(PEt_{a})$	1952 ¹	-6.85^{m}	650	19.0	nm	17.0	2773
$PtH(C_6H_5)(PMe_3)_2$	1926	-5.74	678	20.6	1.13 (t, PCH ₃ , " $J(PH)$ " = 6.5, ${}^{2}J(PtH)$ = 33)	-21.0	2710
$PtH(C_6H_5)(PMe_2Ph)_2^n$	1945	-6.10	664	19.5	1.50 (t, PCH ₂ , " $J(PH)$ " = 7, ${}^{2}J(PtH) = 38$)	nm	nm
PtH(CH ₃)(PPh ₃) ₂	1936°	-3.77	656	18.3	-0.41 (dt, PtCH ₃ , ² J(PtH) = 52, ³ J(PH) = 5, ³ J(HPtCH) = 2.2), 7.2-7.9 (m, Ph)	nm	nm
PtH(CH ₃)(P- <i>i</i> -Pr ₃) ₂	1927	-6.80 ^p	648	17.1	-0.09^{q} (dt, PtCH ₃ , ² J(PtH) = 54, ³ J(PH) = 4.5, ³ J(HPtCH) = 2.4), 1.06 (q, PCHCH ₃ , "J(PH)" = 13), 2.20 (m, PCHCH ₃)	nm	nm

^a Abbreviations: nm, not measured; t, triplet; dt, double triplet; q, quartet; qn, quintet; m, multiplet. ^b In Nujol, except where indicated. ^c In CH₂Cl₂ or CD₂Cl₂, except where indicated. Aromatic resonances C₆H₅Pt were multiplets in the range δ 6.8–8.0. Coupling constants (J) are in Hz. ^d In C₆H₆, except where indicated. ^e "J(PH)" = |²J(PH) + ⁴J(PH)| for P-CH₃ and |³J(PH) + ⁵J(PH)| for P-C-CH₃. ^f 1990, 1965 sh, 1925 cm⁻¹ (KBr disk), 1953 cm⁻¹ (CH₂Cl₂). ^g 1966 cm⁻¹ (CH₂Cl₂). ^h In CH₂Cl₂. ⁱ Liquid film. ^j Lit.¹¹ δ -7.05, J = 648, 19 Hz ((CD₃)₂CO). ^k Lit.¹¹ δ 17.3, J = 2796 Hz ((CD₃)₂CO). ^l In acetone. ^m In C₆D₆. ^m Not purified. ^o 1968 cm⁻¹ (CH₂Cl₂). ^p Lit.¹⁵ δ -6.19, J = 641.8, 17.2 Hz (C₆D₅CD₃). ^q Lit.¹⁵ δ 0.64, J = 52.7, 49, 2.3 Hz (C₆D₅CD₃).

and thermal instability. Colorless needles are obtained by crystallization from a concentrated solution in isopentane at -78 °C, but the compound liquefies at ca. 5 °C even under high vacuum. The liquid is not stable to air or light for more than a few hours at room temperature, but it is more stable in solution in benzene or *n*-pentane, where it can be stored for at least 24 h at room temperature in the absence of light. The solid complex is stable for long periods under nitrogen at -20 °C. The trimethylphosphine analogue *trans*-PtH(C₆H₅)-(PMe₃)₂ is a colorless crystalline solid that is unstable in benzene or dichloromethane solution at room temperature.

The hydridomethyl complexes are more sensitive to air and light than the corresponding hydridophenyl complexes. Solid *trans*-PtH(CH₃)(PPh₃)₂ becomes yellow even under nitrogen at room temperature, and solutions in dichloromethane lose the characteristic ν (PtH) band on standing. The P-*i*-Pr₃ analogue can be stored under nitrogen at 0 °C for several months.

Spectroscopic data for the trans- $PtH(R)L_2$ complexes are summarized in Table II. The IR spectra in Nujol mulls or dichloromethane solution show an intense, broad band in the region 1900–2000 cm⁻¹ assigned to ν (PtH). In several cases the band maximum shifts by 30-70 cm⁻¹ to higher frequency from solid state to solution, e.g. for trans-PtH(C_6H_5)(PPh₃)₂ ν (PtH) is 1890 cm⁻¹ in Nujol and 1966 cm⁻¹ in dichloromethane cf. for trans-PtH(C_6H_9)(PPh₃)₂, 1940, 1855 cm⁻¹ (KBr disk) and 1920 cm⁻¹ (CH₂Cl₂)).¹² These values of ν -(PtH) are lower than those observed for complexes of the type trans-PtHClL₂ (ca. 2100 cm⁻¹),^{32,33} as expected on the basis of the high trans influence of phenyl and methyl groups. All the complexes show a singlet with ¹⁹⁵Pt satellites in their ³¹P{¹H} NMR spectra, the magnitude of ¹J(PtP) being as expected for mutually trans phosphines in planar platinum(II) complexes. In agreement, the ¹H NMR spectra of complexes of methyl- and tert-butylphosphines show triplet resonances for the $P-CH_3$ or $P-C-CH_3$ groups. In the hydridophenyl complexes the hydride resonance consists of a broad 1:2:1 triplet with ¹⁹⁵Pt satellites, ²J(PH) being 18-20 Hz and ¹J-(PtH) = 600-700 Hz. These values are characteristically

larger and smaller, respectively, than those observed for *trans*-PtHXL₂ complexes where X is an electronegative ligand of low trans influence, e.g. for X = Cl and L = PEt₃, ²J(PH) = 14.5 Hz and ¹J(PtH) = 1276 Hz. In well-resolved spectra the broadness of the lines of the triplet can be seen to be due to coupling of the hydride proton with the ortho protons of the σ -phenyl ligand, each line itself being a 1:2:1 triplet with ⁴J(HH) \approx 2 Hz. In the hydridomethyl complexes the hydride resonance appears as a triplet of quartets with ¹⁹⁵Pt satellites owing to coupling with the Pt-CH₃ protons (³J(HH) \approx 2 Hz); as expected, the methyl proton resonances are double triplets with ¹⁹⁵Pt satellites (³J(PH) \approx 5 Hz, ²J(PtH) \approx 53 Hz). In both the hydridophenyl and hydridomethyl complexes the hydride resonance is at higher frequency (δ -3 to -8) than that in *trans*-PtHClL₂, e.g. δ -16.9 for L = PEt₃.

The spectroscopic evidence for the formulation of the byproduct in the reduction of *trans*- $[Pt(C_6H_5)(MeOH)(PEt_3)_2]^+$ as mer-PtH₃(C₆H₅)(PEt₃)₂ is as follows. The ¹H NMR spectrum shows two hydride resonances centered at δ -13.22 and -9.48 assigned respectively to H trans to C₆H₅ and H trans to H. The first is a broad triplet of triplets with ¹⁹⁵Pt satellites, this hydride being coupled to two equivalent hydride protons in addition to two ortho hydrogens of the σ -phenyl group and phosphorus, while the second is a triplet of doublets with ¹⁹⁵Pt satellites, these hydrides being coupled to the hydride trans to C_6H_5 . Coupling constants are given in the Experimental Section. The ³¹P{¹H} NMR spectrum in toluene at -50 °C shows a singlet with ¹⁹⁵Pt satellites at δ 5.5 (¹J(PtP) = 1917 Hz), the magnitude of ${}^{1}J(PtP)$ being about 0.6 that for the platinum(II) complex trans-PtH(C₆H₅)(PEt₃)₂, as expected.³⁴ The IR spectrum of a thin film of crude trans-PtH(C_6H_5)- $(PEt_3)_2$ containing PtH₃(C₆H₅)(PEt₃)₂ as an impurity exhibits a broad band at 1780 cm⁻¹ assignable to ν (PtH) for the trans-H-Pt-H unit (cf. 1725 cm⁻¹ for trans-PtH₂(PEt₃)₂);³¹ the corresponding band for the trans-H-Pt-C₆H₅ unit is presumably obscured by the strong absorption due to the major component.

Not surprisingly, the complexes trans-PtH(R)L₂ are much more stable with respect to reductive elimination of RH than are the corresponding cis isomers. Thus, trans-PtH(C₆H₅)-(PPh₃)₂ can be recovered unchanged from refluxing benzene

⁽³²⁾ Jesson, J. P. In "Transition Metal Hydrides"; Muetterties, E. L., Ed.; Marcel Dekker: New York, 1971; Chapter 4 and references cited therein.

⁽³³⁾ Kaesz, H. D.; Saillant, R. B. Chem. Rev. 1972, 72, 231–281 and references cited therein.

⁽³⁴⁾ Pidcock, A.; Richards, R. E.; Venanzi, L. M. J. Chem. Soc. A 1966, 1707-1710.

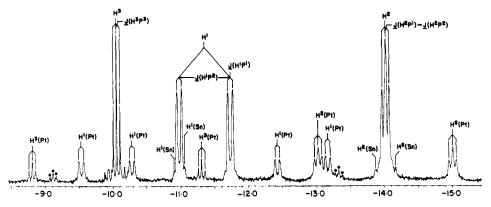


Figure 1. ¹H NMR spectrum at 270 MHz in the metal hydride region of a mixture of *trans*-PtH(C₆H₅)(PEt₃)₂ and (CH₃)₃SnH in CD₂Cl₂ at -78 °C, showing the presence of adducts 4 and 5. Hⁿ(Pt), Hⁿ(Sn) refer to the ¹⁹⁵Pt and ^{117,119}Sn satellites, respectively, of the Hⁿ resonance, protons Hⁿ being numbered as in 4 and 5. Peaks marked \bullet arise from PtH₃(C₆H₅)(PEt₃)₂.

after 5 h, whereas cis-PtH(C_6H_5)(PPh₃)₂ decomposes at -25 °C. The triethylphosphine complex trans- $PtH(C_6H_5)(PEt_3)_2$ decomposes rapidly at 65 °C in C_6H_{12} or C_6D_{12} to give benzene, platinum metal, and Pt(PEt₃)₃ as the major metal complex, identified by ³¹P NMR spectroscopy. Two other complexes are also formed in small amount, but they have not been identified. In methylcyclohexane at 45 °C, trans-PtH- $(C_6H_5)(PEt_3)_2$ appears to be stable for ca. 6 h, then undergoes rapid decomposition over a period of ca. 1 h, and finally decomposes gradually over a further 5-h period. The products are the same as those in cyclohexane at 65 °C and are formed in similar proportions. The system does not seem to be particularly suitable for kinetic study, although the fact that decomposition in cyclohexane at 65 °C is repressed by triethylphosphine suggests that the first step may be dissociation of this ligand from the coordination sphere.³⁵ The ¹H NMR spectrum of trans-PtH(C_6H_5)(PEt₃)₂ at room temperature in the presence of triethylphosphine shows a broad singlet with ¹⁹⁵Pt satellites for the hydride resonance; i.e., ³¹P coupling is removed as a consequence of rapid intermolecular exchange, presumably via the five-coordinate species $PtH(C_6H_5)(PEt_3)_3$. Since this intermediate does not readily eliminate benzene, it probably has the phenyl and hydride ligands in mutually trans sites, e.g. in a trigonal-bipyramidal structure containing equatorial triethylphosphine ligands. A similar structure has been suggested for the thermally unstable dihydride PtH₂- $(PEt_3)_3$.

In contrast with triethylphosphine, carbon monoxide causes rapid elimination of benzene from *trans*-PtH(C_6H_5)(PEt₃)₂, even at -20 °C. The initial product, $Pt(CO)_2(PEt_3)_2$, readily reacts further to give unidentified clusters containing bridging CO groups which are probably analogous to those reported for other tertiary phosphines.³⁷ It is noteworthy that both CO and tertiary phosphines cause rapid elimination of cyanoalkane from trans-PtH(CH₂CH₂CH₂CN)(PPh₃)₂, whereas trans-PtH(CH₂CN)(PPh₃)₂ is unaffected by these reagents.⁸

The Pt-H bond of the trans-PtH(R)L₂ complexes is surprisingly unreactive toward insertion of unsaturated molecules. In contrast with *trans*-PtHX(PEt₃)₂ (X = Cl, ONO₂), trans-PtH(C_6H_5)(PEt₃)₂ does not react with ethylene and the thermally more stable *p*-bromophenyl compound fails to react with diethyl maleate in refluxing toluene or with acrylonitrile in refluxing n-hexane. When the last reaction is carried out in methanol, some 2-methoxypropionitrile is formed, possibly

as a result of reactions 1-3, initiated by reversible reaction of the hydride with an excess of methanol.

$$PtH(Ar)L_2 + CH_3OH \Longrightarrow Pt(OCH_3)(Ar)L_2 + H_2$$
(1)

$$Pt(OCH_3)(Ar)L_2 + CH_2 = CHCN \rightarrow Pt[CH(CN)CH_2OCH_3](Ar)L_2 (2)$$
$$Pt[CH(CN)CH_2OCH_3](Ar)L_2 + CH_3OH \rightarrow CH_3OH$$

$$t_1CH(CN)CH_2OCH_3](Ar)L_2 + CH_3OH \rightarrow Pt(OCH_3)(Ar)L_2 + CH_3OCH_2CH_2CN (3)$$

The highly electrophilic acetylene dimethyl acetylenedicarboxylate, CH₃O₂CC₂CO₂CH₃, reacts rapidly with trans- $PtH(C_6H_4-p-Br)(PEt_3)_2$ in refluxing hexane to give the product of insertion into the Pt-H bond, 2. The vinylic proton resonance appears as a triplet with ¹⁹⁵Pt satellites at δ 6.88, showing that the phosphine ligands are mutually trans; this is confirmed by the appearance of a singlet with ¹⁹⁵Pt satellites in the ³¹P ^{1}H NMR spectrum. The magnitude of ${}^{3}J(PtH)$ for the vinylic proton, 72 Hz, indicates that the ester substitutents are mutually cis on the double bond.38

The trimethylphosphine complex trans-PtH(C_6H_5)(PMe₃)₂ loses benzene on heating with acetonitrile to give a compound identified spectroscopically as the hydrido(cyanomethyl) complex trans-PtH(CH₂CN)(PMe₃)₂. The IR spectrum shows strong bands at 2185 cm⁻¹ (ν (CN)) and 2018 cm⁻¹ (ν (PtH)), and in the ¹H NMR spectrum the hydride resonance appears as a triplet with ¹⁹⁵Pt satellites at -8.56 (²J(PH) = 20.7, $^{1}J(PtH) = 850$ Hz). Similar data have been reported for *trans*-PtH(CH₂CN)(PPh₃)₂, viz. 2183 cm⁻¹ (ν (CN)), 2027 cm⁻¹ (ν (PtH)), and $\delta_{\rm H}$ -7.32 (¹J(PtH) = 746 Hz).^{6,7} The reaction probably proceeds by initial oxidative addition of acetonitrile to give the dihydridoplatinum(IV) complex 3, which subsequently eliminates benzene. Alternatively, reductive elimination of benzene could take place first to give a reactive $Pt(PMe_3)_2$ fragment, which than adds acetonitrile. The IR spectrum of the crude product also shows a weak band at 1570 cm⁻¹, which may arise from a small amount of Pt- $(C_6H_5)(CH_2CN)(PMe_3)_2$ formed by loss of hydrogen from 3, but owing to the small amount of material available purification was not attempted.

Since it is well-known that group 4 element hydrides undergo oxidative addition to platinum(II) complexes,³⁹ the re-

⁽³⁵⁾ This is also the first step in the decomposition of dialkylbis(tertiary phosphine)platinum(II) complexes: McCarthy, T. J.; Nuzzo, R. G.; Whitesides, G. M. J. Am. Chem. Soc. 1981, 103, 3396-3403 and references cited therein.

Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, (36) E. L. J. Am. Chem. Soc. 1971, 93, 3543-3544. (37) Chatt, J.; Chini, P. J. Chem. Soc. A 1970, 1538-1542.

⁽³⁸⁾ Mann, B. E.; Shaw, B. L.; Tucker, N. I. J. Chem. Soc. A 1971, 2667-2673.

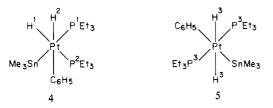

⁽³⁹⁾ Oxidative addition is often followed by reductive elimination and redistribution reactions: (a) Eaborn, C.; Pidcock, A.; Ratcliff, B. J. Organomet. Chem. 1974, 66, 23–28. (b) Bentham, J.; Cradock, S.; Ebsworth, E. A. V. J. Chem. Soc. A 1971, 587-593. (c) Clemmit, A. F.; Glockling, F. Ibid. 1971, 1164-1169. (d) Eaborn, C.; Pidcock, A.; Steele, B. R. J. Chem. Soc., Dalton Trans. 1975, 809-813. (e) Glockling, F.; Pollock, R. J. I. Ibid. 1975, 497-498. (f) Ebsworth, E. A. V.; Marganian, V. M.; Reed, F. J. S.; Gould, R. O. Ibid. 1978, 1167-1170.

Table III. NMR Spectroscopic Data for Isomers of $PtH_2(C_6H_5)(SnMe_3)(PEt_3)_2^a$

	complex 4			complex 5		
	δ(H ¹)	δ(H ²)	δ(P ¹)	δ(P ²)	$\delta(H^3)$	δ(P ³)
J(PH) (¹ H) or J(PP) (³¹ P)	$ \begin{array}{r} -11.3 \\ 204 \ (H^{1}P^{2}) \\ 18 \ (H^{1}P^{1}) \end{array} $	-14.0 14	-13.0 19.5	-22.9 19.5	-10.1 14	-1.7
J(PtH) or J(PtP) J(SnH) or J(SnP)	780 ~40	535 45 ^b	1406 1762 (¹¹⁹ Sn) 1688 (¹¹⁷ Sn)	1 67 0 no	674 ~40	$1841 \\ 140$

^a Abbreviation: no, not observed. ^b Obtained from ${}^{1}H{}^{31}P{}$ spectrum at 60 MHz.

action of *trans*-PtH(C₆H₅)(PEt₃)₂ with trimethyltin hydride was investigated. Equimolar quantities of the two reagents give a colorless solution in CD₂Cl₂ at -78 °C. The ¹H NMR spectrum in the metal-hydride region is very complicated (Figure 1), but the presence of two platinum(IV) complexes 4 and 5 can be inferred from this and from the ³¹P{¹H} NMR

spectrum; the data are collected in Table III. Complex 4 shows two hydride resonances at δ -11.3 and -14.0. The former has one large and one small ³¹P coupling, showing that the hydride is trans to one PEt₃ ligand and cis to the other, while the lower frequency hydride resonance appears as a triplet owing to almost equal couplings with two mutually cis phosphines. Both resonances show satellites arising from coupling with ¹⁹⁵Pt and with the two tin isotopes (¹¹⁹Sn, $I = \frac{1}{2}$, 8.58% abundance; ¹¹⁷Sn, $I = \frac{1}{2}$, 7.61% abundance). The ligand arrangement deduced from these data is confirmed by the ³¹P{¹H} NMR spectrum, which shows a pair of doublets $(^{2}J(PP) = 19.5 \text{ Hz})$ due to the inequivalent PEt₃ ligands, each with ¹⁹⁵Pt satellites. The higher frequency signal arising from PEt₃ trans to Me₃Sn also has two distinguishable pairs of satellites due to coupling with ¹¹⁹Sn (J(SnP) = 1762 Hz) and with ¹¹⁷Sn (J(SnP) = 1688 Hz), the magnitudes of these coupling constants being similar to those observed in platinum(II) complexes of the type cis-Pt(aryl)(SnMe₃)(PPh₃)₂.⁴⁰ It is noteworthy that the magnitude of ${}^{1}J(PtP)$ for PEt₃ trans to Me₃Sn in 4, 1406 Hz, is smaller than that for PEt₃ trans to H, 1670 Hz, which implies that Me₃Sn has an even larger trans influence than hydride. Complex 5 shows in its ¹H NMR spectrum a triplet with ¹⁹⁵Pt satellites at δ -10.1 due to

equivalent hydride ligands which are cis to two phosphine ligands. The ³¹P{¹H} NMR spectrum comprises a singlet due to the equivalent PEt₃ ligands together with satellites arising from coupling with ¹⁹⁵Pt (¹J(PtP) = 1841 Hz) and with ^{117,119}Sn (J(SnP) = 140 Hz). In both 4 and 5 the magnitudes of ¹J(PtH) and ¹J(PtP) resemble those of other hydridoplatinum(IV) complexes⁴¹ and support the structural assignments. The ¹H NMR spectrum of the solution at -78 °C also shows peaks assignable to a small amount of *mer*-PtH₃-(C₆H₅)(PEt₃)₂ (1). When it is warmed to room temperature, the solution turns yellow and gives a mixture of decomposition products, including benzene, tetramethyltin, and hexamethylditin, presumably resulting from a series of reductive elimination, redistribution, and Sn-C cleavage reactions, but the platinum-containing products could not be identified.

Registry No. 1, 90065-01-3; 2, 90130-05-5; 3, 90065-08-0; 4, 90065-07-9; 5, 90130-04-4; trans-PtH(C6H5)(P-t-Bu2Me)2, 90064-99-6; trans-PtH(C₆H₅)(P-t-BuMe₂)₂, 90065-05-7; trans-PtH-(C₆H₅)(PPh₃)₂, 76188-93-7; trans-PtH(C₆H₅)(P-i-Pr₃)₂, 87635-50-5; trans-PtH(C₆H₅)(PEt₃)₂, 67891-26-3; trans-PtH(C₆H₄-p-Br)(PEt₃)₂, 90065-02-4; trans-PtH(C₆H₅)(PMe₃)₂, 76125-03-6; trans-PtH-(CH₃)(PPh₃)₂, 76188-92-6; trans-PtH(CH₃)(P-*i*-Pr₃)₂, 76125-04-7; trans-Pt(OCH₃)(CH₃)(PPh₃)₂, 76125-08-1; trans-Pt-(OCH₃)(C₆H₅)(PEt₃)₂, 60477-61-4; trans-Pt(OCH₃)(C₆H₅)-(PMe2Ph)2, 90065-00-2; trans-mer-PtH3(C6H5)(PMe3)2, 90065-03-5; $Pt(CO)_2(PEt_3)_2$, 76125-09-2; trans- $Pt(C_6H_4-p-Br)[C(CO_2Me)=$ CH(CO₂Me)](PEt₃)₂, 90065-04-6; trans-PtH(C₆H₅)(PMe₂Ph)₂, 90065-06-8; trans-PtCl(C₆H₅)(P-i-Pr₃)₂, 90065-09-1; PtCl(C₆H₅)-(1,5-COD), 51177-65-2; trans-Pt(OH)(CH₃)(P-i-Pr₃)₂, 76125-05-8; $trans-Pt(OH)(C_6H_5)(P-t-Bu_2Me)_2$, 76124-94-2; $trans-Pt-(OH)(C_6H_5)(P-t-BuMe_2)_2$, 76124-95-3; $trans-Pt(OH)(C_6H_5)(PPh_3)_2$, 60399-83-9; trans-PtCl(C₆H₅)(P-t-Bu₂Me)₂, 76316-26-2; trans-Pt-(CH₃)(NHCOCH₃)(PPh₃)₂, 41650-11-7; trans-PtCl(C₆H₅)(PPh₃)₂, 18421-49-3; *trans*-PtI(CH₃)(PPh₃)₂, 28850-19-3; *trans*-PtCl-(C₆H₅)(PEt₃)₂, 13938-93-7; *trans*-PtCl(C₆H₅)(PMe₂Ph)₂, 27081-34-1; trans-PtBr(C₆H₄-p-Br)(PEt₃)₂, 90065-10-4; trans-PtCl(C₆H₅)(PMe₃)₂, 90065-11-5; Pt(PEt₃)₃, 39045-37-9; AgBF₄, 14104-20-2; C₆H₁₂, 110-82-7; n-decane, 124-18-5; methylcyclohexane, 108-87-2; dimethyl acetylenedicarboxylate, 762-42-5; acrylonitrile, 107-13-1; diethyl maleate, 141-05-9.

⁽⁴⁰⁾ Eaborn, C.: Kundu, K.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1981, 1223-1231.

⁽⁴¹⁾ Anderson, D. W. W.; Ebsworth, E. A. V.; Rankin, D. W. H. J. Chem. Soc., Dalton Trans. 1973, 854-858, 2370-2373.